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Introduction – Molecular Dynamics and Potentials

• Molecular Dynamics
• A simulation tool for analyzing the 

physical behavior of a system of particles

• 𝐹 = 𝑚𝑎
• Newton’s laws applied to individual 

atoms

• Interatomic Potentials
• Describe the energy between 

particles, from which the forces can be 
derived

• The accuracy of the potential 
translates to the accuracy of the 
simulation

1 Mordehai, Dan and Kazakevich, Michael and Srolovitz, David J. and Rabkin, Eugen, ACTA MATERIALIA, 2011

Dislocation Nucleation in Metallic Nanoparticles



Types of Interatomic Potentials

• Interatomic Potentials describe the potential energy 
of a system of atoms

• There are many different Types of potentials with 
different resolution and computational load

• Empirical Potentials

• Ab Initio Methods

• Machine Learning Potentials

• Multiscale Modeling
• A method of bridging the scales from continuum 

mechanics to atomistic modeling

1
https://www.slideshare.net/bios203/bios203-lect4



Lennard-Jones Potential

• Sometimes parameterized as

• 𝑉 𝑟 =
𝐴

𝑟12
−

𝐵

𝑟6

• Where 𝐴 = 4𝜀𝜎12, 𝐵 = 4𝜀𝜎6

• Widely known two-body potential

• Used as a basis for the two-body interaction 
in many higher order potentials
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The deeper the well depth 𝜀, the stronger the interaction between the two
particles. When the bonding potential energy is equal to zero, the distance
of separation, 𝑟, will be equal to 𝜎. Minimum energy distance occurs at
21/6 𝜎.

21/6𝜎

2 Lennard-Jones, Royal Society, 1924



Other Pair Potentials

• Morse Potential

• Similarly composed of a repulsive and 
attractive term

• Buckingham Potential

• Considered a simplified LJ Potential

𝑉 𝑟 = 𝐷𝑒 𝑒−2𝑎 𝑟−𝑟𝑒 − 2𝑒−𝑎 𝑟−𝑟𝑒

Φ12 = 𝐴exp 𝐵𝑟
𝐶

𝑟6
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https://commons.wikimedia.org/wiki/File:Morse-potential.png

Morse, Physical Review, 1929 Buckingham, Royal Society, 1938



Lennard-Jones Potential - Applications

• Using the LJ to match physical properties of 
larger clusters of molecules for speeding up 
computation

• Using LJ to derive properties of iron in 
molten lead for investigation of corrosion 
inhibition in nuclear reactors using Nitrogen

No Nitrogen 0.05-0.29 wt% N 0.3 wt% N

T=1023K

4

Cha, J., Lee, W., Shin, E. et al. , Multiscale Sci. Eng., 2020

Triwardani et al. , AIP Conference Proceedings, 2020



Three Body Potentials

𝑉 =
1

2


𝑎,𝛽≠𝛼

𝜙2 𝑟𝛼𝛽 +
1
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𝑖,𝑗

𝜙3 𝑟𝛼𝛽 , 𝑟𝛼𝛾, 𝜃𝛾𝛼𝛽

5



Stilinger Weber

• Designed for Silicon

• Keating potential for pair-potential

• cos 𝜃𝛽𝛼𝛾 +
1

3

• This term is specific to the tetrahedral 
form of silicon, where 𝜃𝑡 = 109.47°

• cos 𝜃𝑡 = −
1

3

• This minimizes the energy in the 
tetrahedral configuration

𝑉 =
1

2


𝑎,𝛽≠𝛼

𝜙2 𝑟𝛼𝛽 +
1

3!


𝑖,𝑗

𝜙3 𝑟𝛼𝛽, 𝑟𝛼𝛾, 𝜃𝛾𝛼𝛽

• Parameters Used

• 𝑍 = 21, 𝜇 = 1.20, 𝑟𝑐𝑢𝑡 = 1.80

• 𝐴1 = 7.049556277, 𝐴2 = 0.6022246684

• 𝜆1 = 4, 𝜆2 = 0
6 Stillinger, F., Weber, T., Physical Review B, 1985



Stilinger Weber – Modeling Fracture in Graphene and CNT

• Other empirical potentials did not exhibit glass-like brittle 

• (ReaxFF, Tersoff, EDIP, AIREBO)

Young’s Modulus vs Crystallographic 

Direction

7 M Z Hossain et al, J. Phys.: Condens. Matter, 2018 



Tersoff Potential

A Modified Two Body Potential

𝐸𝑖𝑗 = 

𝑖

𝐸𝑖 =
1

2


𝑖,𝑗≠𝑖

𝑉𝑖𝑗

𝑉𝑖𝑗 = 𝑓𝑐 𝑟𝑖𝑗 [𝐴 exp −𝜆1𝑟𝑖𝑗 − 𝐵𝑖𝑗 exp 𝜆2𝑟𝑖𝑗)

Tersoff Trial Potential
𝐵𝑖𝑗 = 𝐵0 exp(−𝑧𝑖𝑗/𝑏)

𝑧𝑖𝑗 = 

𝑘≠𝑖,𝑗

[𝑤 𝑟𝑖𝑘 /𝑤 𝑟𝑖𝑗 ]𝑛 × 𝑐 + exp −𝑑 cos 𝜃𝑖𝑗𝑘
−1

𝑤 𝑟 = 𝑓𝑐 𝑟 exp −𝜆2𝑟

Silicon Energy vs Bond length
Open: Cohesive energy per bond

Closed: Cohesive energy per atom

Si2 dimer

Diamond

Simple Cubic FCC

8 Tersoff, Physical Review Letters, 1985



Tersoff Potential – Modeling Mechanical Behavior in CMCs

6H SiC 𝛽-SiC (3H)

Bilayer h-BN
4H SiC

2H SiC Amorphous BN

6H SiC Large vs Small Simulation Size Young’s Modulus

9 Aluko, O., Pineda, E., et al., NASA-TM, 2019



Embedded Atom Model

𝐸𝑐𝑜ℎ =

𝑖

𝐺𝑖 

𝑗≠𝑖

𝜌𝑗
𝑎 𝑅𝑖𝑗 +

1

2


𝑖,𝑗 𝑗≠𝑖

𝑈𝑖𝑗 𝑅𝑖𝑗

𝐺 is embedding energy, 𝜌𝑎 is the 
spherically averaged atomic electron 

density, and 𝑈 is an electrostatic, two-
atom interaction

Ni Slab with defects. Hydrogen adsorption 
promotes fracture on the right side image

10 Daw, M., Baskes, M., Physical Review B, 1983



Embedded Atom Model - Applications

• Comparison of 3 phase diagrams constructed from different EAM models for Lithium

• Fitted to different microstructural properties and using different procedures

• Show differences in melting points, critical points, and phase transformations

2NN-MEAM – Includes second nearest 
neighbor interactions

11 Jordan Dorrell and Livia B. Pártay, The Journal of Physical Chemistry B, 2020



Wide Selection of Empirical Potentials
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Density Functional Theory

https://brighterion.com/artificial-intelligence-101-neural-networks/13 https://en.wikipedia.org/wiki/Density_functional_theory#/media/File:C60_isosurface.png



Density Functional Theory

• The Schrodinger Equation:
Η Ψ = 𝐸|Ψ⟩

• Governs dynamics of a time-independent 
system

• Ψ is the many electron wave function

• Contains 3N degrees of freedom, where N 
is the number of electrons

• Density Functional Theory reduces the 
complexity of the system from a 3N Body 
problem to N single body problems

• Theorem 1 - The external potential is a 
unique functional of the electron density 
only. Thus the Hamiltonian, and hence all 
ground state properties, are determined 
solely by the electron density.

• Theorem 2 - The groundstate energy may 
be obtained variationally: the density that 
minimizes the total energy is the exact 
groundstate density.

𝐾𝑜ℎ𝑛 − 𝑆ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

𝑊𝑎𝑙𝑡𝑒𝑟 𝐾𝑜ℎ𝑛 𝐿𝑢 𝐽𝑒𝑢 𝑆ℎ𝑎𝑚

14 Kohn, W., Sham, L., Physical Review, 1965



Density Functional Theory

𝐾𝑜ℎ𝑛 − 𝑆ℎ𝑎𝑚 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

• The Schrodinger Equation:
Η Ψ = 𝐸|Ψ⟩

• Governs dynamics of a time-independent 
system

• Ψ is the many electron wave function

• Contains 3N degrees of freedom, where N 
is the number of electrons

• Density Functional Theory reduces the 
complexity of the system from a 3N Body 
problem to N single body problems

• Theorem 1 - The external potential is a 
unique functional of the electron density 
only. Thus the Hamiltonian, and hence all 
ground state properties, are determined 
solely by the electron density.

• Theorem 2 - The groundstate energy may 
be obtained variationally: the density that 
minimizes the total energy is the exact 
groundstate density.

15

Bechstedt F. (2015) Density Functional Theory

Kohn, W., Sham, L., Physical Review, 1965



Density Functional Theory in MD – Car-Parrinello

• Lagrangian form assigns Newtonian 
dynamics to both the ionic nuclei and the 
electron orbitals themselves

• A fictitious mass parameter is assigned to the 
electron orbitals 

• Large enough to allow large timesteps

• Small enough not to affect nuclei

Lagrangian (Kinetic minus Potential Energy) 

Equations of Motion

Constant of Motion16 Car, R., Parinello, M., Physical Review Letters, 1985



Density Functional Theory in MD – Born-Oppenheimer

• Born-Oppenheimer Molecular Dynamics are 
very similar to Car-Parinello

• Lagrangian representation of system 
energy dynamics

• Electronic waveform remains on the 
Born-Oppenheimer potential energy 
surface

• Born Oppenheimer calculates the electronic 
wave function differently

• Car-Parinello uses fictitious dynamics to 
propagate

• Born-Oppenheimer solves the wave 
function at each time step

• Born Oppenheimer has larger timesteps but 
more costly computation

• Higher accuracy

• More used as computational power has 
increased

17 WIREs, Comput Mol Sci, 2012



Ab initio Molecular Dynamics in action

• Experimental and simulated XRD for 
amorphous GST

• Order Parameters for different coordinations

18 S. Caravati et al., Appl. Phys. Lett. 2007



Machine Learning and 
Interatomic Potential 
Development

https://brighterion.com/artificial-intelligence-101-neural-networks/

The underlying physical laws necessary 

for the mathematical theory of a large part 

of physics and the whole of chemistry are 

thus completely known, and the difficulty is 

only that the exact application of these 

laws leads to equations much too 

complicated to be soluble. It therefore 

becomes desirable that approximate 

practical methods of applying quantum 

mechanics should be developed.

~Paul A.M. Dirac

19



Analytical Representations of Potential Energy Surfaces

Ab initio quantum and molecular dynamics of the 
dissociative adsorption of hydrogen on Pd(100)

• 6D analytical model that interpolated between 
different calculated potential energy surfaces

• Results compared with DFT calculations
0.12eV0.01eV

20 Gross, A., Scheffler, M., Physical Review B,1997



Analytical Representations of Potential Energy Surfaces

2D PES calculated for high symmetry sites and 
molecular orientations

Only the distance between Hydrogen atoms and 
the height of the atoms from the surface are varies 
for these 2D PESs

6D Potential obtained by interpolating between the 
2D sites

Important Experimental trends captured
Deviation in surface

Inflexible and grows complex very quickly with 
increased problem dimensionality

21 G. Wiesenekker, G. J. Kroes, E. J. Baerends, J. Chem. Phys. , 1996



Neural Network Representation of Potential Energy Surfaces

• Highly flexible, nonlinear model that can 
approximate any continuous function

• Artificial ‘neurons’ or nodes are arranged in layers 
and interconnected via links

• Each link is multiplied by a weight before being 
supplied to a new node

• Only the Input Layer and Output Layer are 
interacted with
• Hidden layers not visible from the outside

• Every node is connected to every node in adjacent 
layers.
• Nodes within the same layer are not 

connected
• Information is only transmitted forward
• Multilayer Feed-Forward Neural Network

22 Lorenz, S., Gross, A., Scheffler, M., Chemical Physics Letters, 2004



Neural Network Representation of Potential Energy Surfaces

• The Neural Network is minimized via the Cost 
Function
• The square root of this function is the Root 

Mean Square Error (RMSE)
• For each new training data input, the Cost 

Function is minimized by adjusting the weights of 
the links in the neural network

• This minimization is called ‘learning’
• Typically done via gradient-based learning 

such as
• Steepest Descent
• Conjugate Gradients
• Other algorithms

• Global Extended Kalman Filter used in this 
paper

• Tested on a H2 adhesion on Pd surface

23 Lorenz, S., Gross, A., Scheffler, M., Chemical Physics Letters, 2004



Neural Network Representation of Potential Energy Surfaces

• Eight Symmetry adapted inputs chosen so all 
fitting is focused on the chemical dynamics of the 
system
• 8-24-18-1sl neural network used

24 Lorenz, S., Gross, A., Scheffler, M., Chemical Physics Letters, 2004



Neural Network Representation of Potential Energy Surfaces

𝑆𝑖𝑚𝑝𝑙𝑒 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑁𝑒𝑤 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦

• Simple Neural networks are nontransferable
• They only work for the specific arrangement of 

input nodes they were optimized for
• Because weights are different, configuration is 

not arbitrary
• Interchanging two atomic coordinates would 

change the total energy even if the two 
atoms were the same

• Cannot be used for a set with a different number 
of degrees of freedom
• Different numbers of atoms

• A new topology must be constructed to address these 
issues
• Represent total energy as a sum of each atomic 

energy
• Transform coordinates of all atoms with 

symmetry functions to create local environments
• Each atom’s environment is fed into a simple NN

25 Jörg Behler and Michele Parrinello, Phys. Rev. Lett., 2007



Neural Network Representation of Potential Energy Surfaces

𝑅𝑎𝑑𝑖𝑎𝑙 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

• Symmetry Functions convert the positions of all atoms 
to local environments for each atom
• Two structures with different energies must yield 

different symmetry function values
• Identical structures must yield the same values
• Must be invariant with respect to translation and 

rotation
• Must not be coordination dependents, as 

coordination can change during simulation
• Similar to empirical potentials, but describes only 

structure and not energy

• G1 – Radial Distribution, Sum of Gaussians
• G2 – Angular Distribution, sum of cosines centered on I

• Any basis that sufficiently describes atomic 
environment works

26 Jörg Behler and Michele Parrinello, Phys. Rev. Lett., 2007



Neural Network Representation of Potential Energy Surfaces

27 Jörg Behler and Michele Parrinello, Phys. Rev. Lett., 2007



A Machine learning based interatomic potential for amorphous carbon 

28 Deringer, V., Csyani, G., Physical Review B, 2017



Neural Network Potentials for Multicomponent Systems

29 Artrith, N., Morawietz, T., Behler, J., Physical Review B, 2011



Active Learning Machine Potentials – Structure Prediction

30 Podryabinkin, Evgeny V. et al., Phys. Rev. B, 2019



Multiscale Modeling

https://brighterion.com/artificial-intelligence-101-neural-networks/ 31



Bridging Length and Time Scales

• Ab intio calculations of DFT and Molecular 
Dynamics are still extremely limited in the 
length and time scales they can simulate 
with currency computational power

• Multiscale modeling attempts to bridge 
the length and time scales such that 
simulations can approach the scale of real 
experiments or beyond

32

https://www.researchgate.net/publication/328928005_USE_OF_CARBON_NANOTUBE_COMPOSITES_IN_GEARING 



Quasicontinuum Method – Atomistic Simulations in FEA

Cauchy-Born Rule
In a crystalline solid subject to a small strain, the 
positions of the atoms within the crystal lattice 

follow the overall strain of the medium

33 E. B. Tadmor , M. Ortiz & R. Phillips, Philosophical Magazine A, 1996



Quasicontinuum Method – Testing Edge Cases

34 E. B. Tadmor , M. Ortiz & R. Phillips, Philosophical Magazine A, 1996



Quasicontinuum Method – Modeling Nanoindentation

Z displacement for a R=6.5A indenter

35

200 x 100 nm Cu FCC Crystal Out of plane displacement

Load Penetration Curves

Moslemzadeh, H., Alizadeh, O. & Mohammadi, S., Meccanica, (2019)



Quasicontinuum Method – Nanowelding Analysis

Strain may occur at roots of the weld instead of at the contact points

36

Schematic of the QC mesh

Wu, CD., Fang, TH. & Lin, YJ., J Mol Model (2018)



Finite Temperature Quasicontinuum

• Finite Temperature Quasicontinuum, or Hot-QC
• Requires a model for the transfer of heat between partitioned domains
• An effective Hamiltonian is derived that adequately approximates the contributions of the 

unrepresented atoms in the continuum region

37 W.K. Kim, M. Luskin, D. Perez, A.F. Voter, E.B. Tadmor, Journal of the Mechanics and Physics of Solids, 2014



Hyperdynamics – Bridging Time scale

• A Bias potentials raises the energy of the system in 
areas other than the transition states

• Infrequent events rates boosted proportionally to 
the magnitude of the bias potential

• Requires no prior knowledge of the transitioning 
states of the system

38 Voter, Arthur, Physical Review Letters, 1997



HyperQC – Combining Spatial and Temporal Scaling

• Combining the spatial scaling of Quasicontinuum
with the temporal scaling of Hyperdynamics

• A mechanism-based bias potential is applied that 
lowers the energy barrier for slip in fcc crystals

• Speedups between 1000 and 10000 were 
experienced, lowering as temperature increased

39 W. K. Kim & E. B. Tadmor, Philosophical Magazine, 2017



Conclusion 

• Empirical Potentials
• Computationally Inexpensive
• Based on Physical Models
• Wide range of performance based on model used and application

• Ab Initio Calculations and Potentials
• Based on Quantum Mechanical Methods such as Density Functional Theory
• Extremely computationally expensive
• Most accurate method available

• Machine Learning Potentials
• Interpolated potentials based on data sets created from Quantum Mechanical Calculations
• Combines the accuracy of Ab Initio with the speed of Empirical
• Possibly the future of Molecular Dynamics Simulations

• Multiscale Methods – Quasicontinuum and Hyperdynamics
• Bridging the gaps between length and time scales
• Brings the possibility of simulating real-time and scale experiments

1
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